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The envelope theory (ET) is an approximation method to
solve the many-body Schrédinger equation.

[1] Semay, Ducobu (2016) Eur. J. Phys., 37, 045403
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The ET for systems of all identical particles
What is the ET 7

The envelope theory (ET) is an approximation method to
solve the many-body Schrédinger equation.

It provides approximation of the spectrum and eigenvectors for
a very large class of N-body Hamiltonians [1].

[1] Semay, Ducobu (2016) Eur. J. Phys., 37, 045403
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The ET for systems of all identical particles
What is the ET 7

For today, we will use:

H = ZT(Pi) + Z V(ry)

—

with p; = |pj| and rj = |Fi — F].

One- and K-body potentials can also be considered. All
computations are performed in the centre of mass (CM) frame.

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
5/40



ET for N id.
0000000000000 00

The ET for systems of all identical particles
What is the ET 7

For today, we will use:

H = ZT(Pi) + Z V(ry)

—

with p; = |pj| and rj = |Fi — F].

One- and K-body potentials can also be considered. All
computations are performed in the centre of mass (CM) frame.

The basic idea of the ET is to approximate this hamiltonian
with a set of harmonic oscillator (HO) Hamiltonian [2].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
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What is the ET 7

Remark about the N identical body HO:

N

HOH:Z_+ZP

i=1 i<j=2 i=1

[3] Silvestre-Brac, Semay, Buisseret, Brau (2010) J. Math. Phys., 51, 032104
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The ET for systems of all identical particles
What is the ET 7

Remark about the N identical body HO:

N N
HOH:Z_+ZP

i=1 i<j=2 i

The exact spectrum for this Hamiltonian can be analytically
found by a diagonalisation procedure [3]:

Evo = A/ 2—rl\:,pQ(N) with Q(N) = Z_(Qn,- + I + D/Q)

i=1

[3] Silvestre-Brac, Semay, Buisseret, Brau (2010) J. Math. Phys., 51, 032104
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The ET for systems of all identical particles
What is the ET 7

Remark about the N identical body HO:

N N
HOH:Z_+ZP

i=1 i<j=2 i

The exact spectrum for this Hamiltonian can be analytically
found by a diagonalisation procedure [3]:

2Ny . N-1
Evo = |/ =~ Q(N) with Q(N) = > (@ni + I+ D)2)

i=1
(We use natural units).

[3] Silvestre-Brac, Semay, Buisseret, Brau (2010) J. Math. Phys., 51, 032104
6/40
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The ET for systems of all identical particles
Essential idea behind the ET

Aim: find the spectrum of this generic Hamiltonian

H= Z T(pi) + Z V(r;).

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
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Essential idea behind the ET

Aim: find the spectrum of this generic Hamiltonian

H= Z T(pi) + Z V(r;).

To this end, we introduce an auxiliary Hamiltonian:

N N
A= Tipi Awi}) + > Vilry, {pi})-
i=1 i<j=2

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
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The ET for systems of all identical particles
Essential idea behind the ET

Aim: find the spectrum of this generic Hamiltonian

H= Z T(pi) + Z V(r;).

To this end, we introduce an auxiliary Hamiltonian:

N N
A= Tipi Awi}) + > Vilry, {pi})-
=1 I<j=2

o {4} and {p;} are called auxiliary fields [2]. For now,
they depend on the variables p; and ;.

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
7/40
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The ET for systems of all identical particles
Essential idea behind the ET

Commentaries about the auxiliary Hamiltonian:

N N
H ZTI P”{/Ll Z Vij(rfja{pij})'
i=1 i<j=2

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
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The ET for systems of all identical particles
Essential idea behind the ET

Commentaries about the auxiliary Hamiltonian:

N N
H ZTI P”{/Ll Z Vij(rfja{pij})'
i=1 i<j=2

@ lllustration for the potential:

Vii(ri {pi}) = pirg + V(I (pi)) + pid(p)?
where J(x) is the inverse of V'(x)/(2x).

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
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The ET for systems of all identical particles
Essential idea behind the ET

Commentaries about the auxiliary Hamiltonian:

N N
H ZTI P”{/Ll Z Vij(rfja{pij})'
i=1 i<j=2

@ lllustration for the potential:

Vii(ri {pi}) = pirg + V(I (pi)) + pid(p)?
where J(x) is the inverse of V'(x)/(2x).

@ Setting the constraints 5” = (‘% =0 Vi, His
recovered [2].
= Auxiliary field method
[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
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The ET for systems of all identical particles
Essential idea behind the ET

Idea behind the ET: to replace the auxiliary fields by
auxiliary parameters [2]. H becomes then an HO
Hamiltonian.

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
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The ET for systems of all identical particles
Essential idea behind the ET

Idea behind the ET: to replace the auxiliary fields by
auxiliary parameters [2]. H becomes then an HO
Hamiltonian.

o Vy(ry.Api}) = pyri + V(I(py)) + piJ(py)°
Cst
= E = Eno({i}, {pi}) + C*({ni}, {pyj}), where E is an
eigenvalue of H.

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
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The ET for systems of all identical particles
Essential idea behind the ET

Idea behind the ET: to replace the auxiliary fields by
auxiliary parameters [2]. H becomes then an HO
Hamiltonian.

o Vy(ry.Api}) = pyri + V(I(py)) + piJ(py)°
Cst
= E = Eno({i}, {pi}) + C*({ni}, {pyj}), where E is an
eigenvalue of H.

@ The spectrum of H is approximately recovered by setting
[2] i
0E

Opi

_0E

=
Hio 3[7”

Pijo

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
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How many equations do we need to solve 7
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How many equations do we need to solve 7

N(N-1)

@ In general, there are N parameters p; and Cj = ==

parameters p;;.
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Essential idea behind the ET

How many equations do we need to solve 7

@ In general, there are N parameters ; and C2 = N('\é_l)

parameters p;;.

@ Since the wave-function must be (anti-)symmetric, we
can show p; = p and p;j =p Vi, j.

10/ 40



ET for N id.
0000008000000 00

The ET for systems of all identical particles
Essential idea behind the ET

How many equations do we need to solve 7

@ In general, there are N parameters ; and C2 = N('\é_l)

parameters p;;.

@ Since the wave-function must be (anti-)symmetric, we
can show p; = p and p;j =p Vi, j.

QE _ OF
i Opi 9
equations and to two solutions (g, po) for each level.

@ The constraints = 0 reduces to only two

10/ 40



ET for N id.
000000080 000000

The ET for systems of all identical particles
Essential idea behind the ET

= Basically H is approximated by a set of auxiliary
HO Hamiltonians, one for each level [2].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

[4] Semay, Roland (2013) Res. Phys., 3, 231
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000000080 000000

The ET for systems of all identical particles
Essential idea behind the ET

= Basically H is approximated by a set of auxiliary
HO Hamiltonians, one for each level [2].

It can be shown that the constraints

oE
o

_OE

=—| =0
dp

Po

Ho

lead to a set of three equations called compact equations
of the ET [4].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

[4] Semay, Roland (2013) Res. Phys., 3, 231
11/40
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The ET for systems of all identical particles

Compact equations

Practical user necessary informations: let us take the
following generic Hamiltonian

N N
H=Y T(a)+ Y. V(7i—7,
i=1 i<j=2

[4] Semay, Roland (2013) Res. Phys., 3, 231
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The ET for systems of all identical particles

Compact equations

Practical user necessary informations: let us take the
following generic Hamiltonian

N N
H=> T(&)+ > V(ri-7q,
i=1 i<j=2
the next system gives an approximation for its spectrum [4]:
E = NT(po) + C3V(po)
Npo T'(po) = Crpo V' (o)

\/CT%/POPO = Q(N)

[4] Semay, Roland (2013) Res. Phys., 3, 231
12/40



ET for N id.
000000008000 000

The ET for systems of all identical particles

Compact equations

Practical user necessary informations: let us take the
following generic Hamiltonian

N N
H=> T(&)+ > V(ri-7q,
i=1 i<j=2
the next system gives an approximation for its spectrum [4]:
E = NT(po) + C3V(po)
Npo T'(po) = Crpo V' (o)

\/CT%/POPO = Q(N)

o with pf = (5;2) and g3 = (7 — F)2) Vi.J,

[4] Semay, Roland (2013) Res. Phys., 3, 231
12/40
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000000008000 000

The ET for systems of all identical particles

Compact equations

Practical user necessary informations: let us take the
following generic Hamiltonian

N
H=> T(al)+ ZV i = 1jl);
i=1

i<j=2
the next system gives an approximation for its spectrum [4]:
E = NT(po) + C3V(po)
Npo T'(po) = Crpo V' (o)
\/ Caropo = Q(N)
o with p§ = (p;?) and p§ = ((Fi — 7})*) Vi,j,
o Wlth Q( ) == Zi:l (2”,’ + /I) (N - 1)%

[4] Semay, Roland (2013) Res. Phys., 3, 231
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The ET for systems of all identical particles

Compact equations

Parenthesis about the derivation of the compact equations [4] :

[4] Semay, Roland (2013) Res. Phys., 3, 231
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The ET for systems of all identical particles

Compact equations

Parenthesis about the derivation of the compact equations [4] :

@ Hellmann-Feynman theorem: <‘3—Z> = ‘g—g
= E=NT(po) + C}V(po)

[4] Semay, Roland (2013) Res. Phys., 3, 231
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The ET for systems of all identical particles

Compact equations

Parenthesis about the derivation of the compact equations [4] :

@ Hellmann-Feynman theorem: <‘3—Z> = ‘g—g
= E=NT(po) + C}V(po)

o (Generalised) virial theorem
= NpoT'(po) = Ciypo V' (po)

[4] Semay, Roland (2013) Res. Phys., 3, 231
13/40



ET for N id.
000000000 e00000

The ET for systems of all identical particles

Compact equations

Parenthesis about the derivation of the compact equations [4] :

@ Hellmann-Feynman theorem: <‘3—Z> = ‘g—g
= E=NT(po) + C}V(po)

o (Generalised) virial theorem
= NpoT'(po) = Ciypo V' (po)

e Comparison with an exact solution: (Huyo) = Eno
=/ Caupopo = Q(N)

[4] Semay, Roland (2013) Res. Phys., 3, 231

13/40
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The ET for systems of all identical particles
Properties of the ET

e Variational character: ET
can give an upper or a lower

bound [2]. "

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
[4] Semay, Roland (2013) Res. Phys., 3, 231
[5] Semay (2015) Few-Body Syst., 56, 149
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Properties of the ET

e Variational character: ET
can give an upper or a lower

bound [2].

@ The compact equations have
a nice semi-classical
interpretation [4].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
[4] Semay, Roland (2013) Res. Phys., 3, 231
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The ET for systems of all identical particles
Properties of the ET

e Variational character: ET
can give an upper or a lower

bound [2].

@ The compact equations have
a nice semi-classical
interpretation [4].

@ Solution may be analytical
with N as a variable [5].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
[4] Semay, Roland (2013) Res. Phys., 3, 231

[5] Semay (2015) Few-Body Syst., 56, 149
14 /40
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The ET for systems of all identical particles

A variational character for ET

e Variational character: for some Hamiltonian, the ET
gives an upper or a lower bound [2].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

[6] Semay (2011) Phys. Rev. A, 83, 024101
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A variational character for ET

e Variational character: for some Hamiltonian, the ET
gives an upper or a lower bound [2].
o Variational character = H is tangent to H
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00000000000 e000

The ET for systems of all identical particles

A variational character for ET

e Variational character: for some Hamiltonian, the ET
gives an upper or a lower bound [2].
o Variational character = H is tangent to H + comparison
theorem [6].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

[6] Semay (2011) Phys. Rev. A, 83, 024101
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Hamiltonian: T(p) = 2 V(x) = ax?

2m

= "Approximated" spectrum: £ =Q,/2Va

Results are from [5] Semay (2015) Few-Body Syst., 56, 149
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The ET for systems of all identical particles
Analycity

Hamiltonian: T(p) = 2 V(x) = ax?

2m

= "Approximated" spectrum: £ =Q,/2Va

Hamiltonian: T(x) = Fx“ V(x) = sgn(B)Gx?
= Approximated spectrum:

=m0 ()" (5)" (V&)™ o)

Results are from [5] Semay (2015) Few-Body Syst., 56, 149
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The ET for systems of all identical particles

Analycity

Hamiltonian: T(p) = % V(x) = ax?

= "Approximated" spectrum: £ =Q,/2Va

Hamiltonian: T(x) = Fx~ V(x) = sgn(j3)Gx”

= Approximated spectrum:
B « 2a—af 1/(a+pB)
E = sgn(8)(8 + a) ((%) (9)" (V) Q”‘B)
(—x)2

-2 V(x) = —Vee 7

Hamiltonian: T(p) = 5-
= Approximated spectrum : E = —c2v,e2W©®) 2w(5) +1) where
1/2 : :
§=-1 (Wcﬁ)zazcﬁ) and w(x) is a Lambert function.

Results are from [5] Semay (2015) Few-Body Syst., 56, 149
16/ 40
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The ET for systems of all identical particles
Tests at D =3
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Figure: Biding energy for weakly-interacting bosons (gaussian
interaction) - Exact results in circles, ET results in diamonds.

Results are from [5] Semay (2015) Few-Body Syst., 56, 149
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The ET for systems of all identical particles
Tests at D =3
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Figure: Biding energy for self-gravitating bosons (coulomb
interaction) - Exact results in circles, ET results in diamonds.

Results are from [5] Semay (2015) Few-Body Syst., 56, 149
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Figure: Biding energy for weakly-interacting bosons (gaussian
interaction) - Exact results in circles, ET results in line.

Results are from [7] Semay, Cimino (2019) Few-Body Syst., 60, 64
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ET for N; +1
[ leJe]e]

The ET for systems of N, 4+ 1 particles

Why to generalize ?

Hybrid baryons: three quarks + one constituent gluon

@ Constituent approach:
e Interaction with gluonic field ~» potential

o Large-N approach of QCD :
e N quarks + one gluon

@ Combination:
e To solve a N, + 1 particles quantum system

19/ 40
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The ET for systems of N, 4+ 1 particles

Compact equations

Remark about the HO: for a system of N, + 1 particles, the
HO reads as

Huyo = Z Pi Z Paa(|r1 - rjl +Zpab ‘rl _rbl)2

i<j=2

[9] Semay, Cimino, Willemyns (2020) Few-Body Syst., 61, 19
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The ET for systems of N, 4+ 1 particles

Compact equations

Remark about the HO: for a system of N, + 1 particles, the
HO reads as

Huyo = Z Pi Z Paa(|r1 - rjl +Zpab ‘rl _rbl)2

i=1 i<j=2

After some manipulations [9], we can decompose the
Hamiltonian as Hyo = H, + Hcwm where

[9] Semay, Cimino, Willemyns (2020) Few-Body Syst., 61, 19
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ET for N; +1
[e] Te]e]

The ET for systems of N, 4+ 1 particles

Compact equations

Remark about the HO: for a system of N, + 1 particles, the
HO reads as

Huyo = Z Pi Z Paa(|r1 - rjl +Zpab ‘rl _rbl)2

i=1 i<j=2

After some manipulations [9], we can decompose the
Hamiltonian as Hyo = H + Hcwm where

N, P,‘ 2
e Ha = Zi:l 24 2/\/]a + Zl<l’ 2 (paa + N, pab) Fijr
= HO of N, identical particles

[9] Semay, Cimino, Willemyns (2020) Few-Body Syst., 61, 19
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ET for N; +1
[e] Te]e]

The ET for systems of N, 4+ 1 particles

Compact equations

Remark about the HO: for a system of N, + 1 particles, the
HO reads as

Huyo = Z Pi Z Paa(|r1 - rjl +Zpab ‘rl _rbl)2

i=1 i<j=2

After some manipulations [9], we can decompose the
Hamiltonian as Hyo = H + Hcwm where

N, P,‘ 2
e Ha = Zi:l 24 2/\/]a + Zl<l’ 2 (paa + N, pab) Fijr
= HO of N, identical particles

@ Hen = g_; + Napabr2

= HO for the relative motion between the the CM of the
N, particles, and the different one

[9] Semay, Cimino, Willemyns (2020) Few-Body Syst., 61, 19
20/ 40
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Compact equations

Practical user necessary informations: let us take the
following generic Hamiltonian

N, N, Ny
H=3"T.(5)+ To(m) + > Vaall7i — £+ S Vas(I7i — Al),
i=1 i<j=2 i=1

[8] Cimino, Semay (2022) Braz. J. Phys, 52, 45 21/40



ET for N; +1
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The ET for systems of N, 4+ 1 particles

Compact equations

Practical user necessary informations: let us take the
following generic Hamiltonian

N, N, N,

H=>"Ta(l5il) + Tol(IBs]) + D Vaallfi = Fi) + > Vas(|F — 7)),
i=1 i<j=2 i=1

the next system gives an approximation for its spectrum [8]:

E = N,Ta(p.) + Tp(Po) + C,%la Viaa(raa) + NaVap(r§)

2 2
NaTH(P3) 5 = Civy Vialraa)ras + M3 Vi, (1) 2

TI(Po)Po + 2 T(p}) 28 = N,V/, ()R8
b( 0)Po + N, 2(p3) py = Na ab(ro) 4
Palaay/ C’%la = Q(Na)

PoRo = Q(2)

. 2
o with p2=p2+ 28 and 52 = %202 + R?

o with (M) = x;" (2n+ 1+ 3)

[8] Cimino, Semay (2022) Braz. J. Phys, 52, 45 21/40
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The ET for systems of N, 4+ 1 particles

Compact equations

Practical user necessary informations: let us take the
following generic Hamiltonian

N, N, N,
H=> TG + To(1Bo]) + D Vaall7i = 7l) + > Vas(|7i — 7)),
i=1 i<j=2 i=1

the next system gives an approximation for its spectrum [8]:
E = NaTa(pa) + Tb(PO) + C2 Vaa(raa) + N, ab(ro)

Na T3 (P )”v = Cw,V, (rw)rﬁ NeZLyr (1) 55

Pa o]

Ty(Po)Po + 2 Ta(ph) 58 = N,V (1) 2

Paraa\/Ta = Q(Na)

PoRo = Q(2)

2
% and 2= %2 4R}

o with QM) =7 (20 + 1+ 2)

@ with p2=p2 +

a

[8] Cimino, Semay (2022) Braz. J. Phys, 52, 45 21/40
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The ET for systems of N, 4+ 1 particles

Compact equations

Comparison with compact equations for systems of all
identical particles:

E=N, Ta(P;) + Tb(PO) + C/%/a Vaa(raa) + N, Vab(ré)

2 2

E = NT(po) + CI%I V(po) Na TL;(P:,)%% - C/\lg V;;a(raﬂ)rdﬂ a Nt}zil V;/b(fé) S
NpoT'(po) = CiipoV'(po) +—s

0
T/(Po)Po + & T(pl) 28 = N,V/, (1) 50
b(Po)Po + 3. T3(pa) 3 aVis(r0)

\/Epopo =Q 2 " °
N Palaa CNa = Q(Na)

PoRo = Q(2)

21/40
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The ET for systems of N, 4+ 1 particles

Compact equations

Practical user necessary informations: let us take the
following generic Hamiltonian

N, N, N,
H=> TG + To(1Bo]) + D Vaall7i = 7l) + > Vas(|7i — 7)),
i=1 i<j=2 i=1

the next system gives an approximation for its spectrum [8]:
E = NaTa(pa) + Tb(PO) + C2 Vaa(raa) + N, ab(ro)

Na T3 (P )”v = Cw,V, (rw)rﬁ NeZLyr (1) 55

Pa o]

Ty(Po)Po + 2 Ta(ph) 58 = N,V (1) 2

Paraa\/Ta = Q(Na)

PoRo = Q(2)

2
% and 2= %2 4R}

o with QM) =7 (20 + 1+ 2)

@ with p2=p2 +

a

[8] Cimino, Semay (2022) Braz. J. Phys, 52, 45 21/40
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@ The improved ET: Q has a strong degeneracy.

[7] Lobashev, Trunov (2009) J. Phys. A, 42, 345202
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N—-1
o¢=¢z(m >+Z/+ n2=2
i=1

e For ¢ =2, we recover Q
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e How to choose ¢ 7

e fit on a single known accurate solution [5]
o Dominantly Orbital State Method [10]
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Recap of the necessary informations about ET

Compact equations of ET (N identical particles): [1]
E = NT(po) + C§ V(po)
Npo T'(po) = C/%//)o V' (o)
\/CT%,POPO =
o with Q(N) = S0 (2m + 1) + (N — 1) 2,
o with, Vi,j, pi=(p:?) and p3 = ((Fi —

7)%)-

To improve the accuracy of the ET: [2]

Q o¢_¢2 ( +3)+ A0

[1] Semay, Roland (2013) Res. Phys., 3, 231
[2] Semay (2015) Eur. Phys. J. Plus, 130, 156
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(1) To start with a classical purely orbital solution
(2) To start a radial perturbation (still classically)
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p'i‘—"—’m
~ pert. . R
po — po + Ap B
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To apply the DOSM to the compact equations

Strategy:

(1) To start with a classical purely orbital solution
(2) To start a radial perturbation (still classically)
(3) To quantify the perturbation

= 1 1
Test on HO — Z (n,-—|—§) =4/ C% (’H_E)

i=1

29 /40



DOSM for N id.
0000800000

The DOSM for systems of all identical particles

To apply the DOSM to the compact equations

Aim: to compare ET and DOSM in the same conditions.

30/ 40



DOSM for N id.
0000800000

The DOSM for systems of all identical particles

To apply the DOSM to the compact equations

Aim: to compare ET and DOSM in the same conditions.
(1) To restructure Qy,

30/ 40



DOSM for N id.
0000800000

The DOSM for systems of all identical particles

To apply the DOSM to the compact equations

Aim: to compare ET and DOSM in the same conditions.
(1) To restructure Qy,

30/ 40



DOSM for N id.
0000800000

The DOSM for systems of all identical particles

To apply the DOSM to the compact equations

Aim: to compare ET and DOSM in the same conditions.
(1) To restructure Qy,
(2) To develop for € <« 1 (radial perturbation),

Q¢:>\€+)\
po = po + Ap
po = po + Ap

30/ 40



DOSM for N id.
0000800000

The DOSM for systems of all identical particles

To apply the DOSM to the compact equations

Aim: to compare ET and DOSM in the same conditions.
(1) To restructure Qy,
(2) To develop for € <« 1 (radial perturbation),

pert.

Eo =NT(po) + CAV (o) &=

AE = Npy T'(po)e

30/ 40



DOSM for N id.
0000800000

The DOSM for systems of all identical particles

To apply the DOSM to the compact equations

Aim: to compare ET and DOSM in the same conditions.
(1) To restructure Qy,
(2) To develop for € <« 1 (radial perturbation),

Eo = NT(p) + GV (Fo) =5

¢ N—-1 1
AE = N T (5)y D (n,- + 5)
i=1
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To apply the DOSM to the compact equations

(3) Determination of ¢ :

Kk N2 1
DOSM — AE = | [ —— (n;+—>,
2 2

I:
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To apply the DOSM to the compact equations

(3) Determination of ¢ :

A k
NpoT'(Bo) \| Cripe

¢ =

Po
NT'(po)

with p =

2
NPO -,-/( ) NPO T//( )—i—CNV”( )
Po Po

and kK =
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@ To choose /; and calculate ),

N—-1
D -2
A= L+ (N—-1)—=
; + ( )=
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Methodology

Methodology [2]:
@ To choose /; and calculate ),

@ To solve the ET compact equations for a purely orbital
excitation (to find gy and pp),

@ To compute ¢,

A k Po
= =T e with p = p
NpoT'(Bo) \| Cou NT'(po)

and k = ;V”° T'(5o) + N~ " T (50) + CB V" (4o)
PO

[2] Semay (2015) Eur. Phys. J. Plus, 130, 156
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@ To choose /; and calculate ),

@ To solve the ET compact equations for a purely orbital
excitation (to find gy and pp),

@ To compute ¢,

@ To choose n; and calculate @ (do not forget ¢),

N—-1 1
Qp=0) (n,-+§) +A
i=1
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Methodology

Methodology [2]:
@ To choose /; and calculate ),

@ To solve the ET compact equations for a purely orbital
excitation (to find gy and pp),

@ To compute ¢,
@ To choose n; and calculate @ (do not forget ¢),

@ To resolve ET compact equations with this Q.

E = NT(po) + CV(po)
\/ CEropo = Qqp
Npo T'(po) = CZpo V' (po)

[2] Semay (2015) Eur. Phys. J. Plus, 130, 156
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The DOSM for systems of all identical particles

Example

Hamiltonian: T(x) = Fx® V(x) = sgn(B)Gx”?
= Determination of gy and py:
NaFre V@D
o (o) mee
= Computation of ¢:

6= atp

= Final spectrum:

E = sgn(8)(8 + o) ((1"5)5 (g)a (\/?ﬁ)za_aﬁ Qgﬁ) 1/(o+9)

N—1
1
with Q= Va+8 (n,-+§) +A
i=1

Result is from [3] Chevalier et al. (2022) Few-Body Syst., 63, 40
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N

Figure: Biding energy for weakly-interacting bosons (gaussian
interaction) with d = 3 - Exact results in circles, ET results in
diamonds, ¢ = 1.82 results in dashed line.

Results are from [4] Semay (2015) Few-Body Syst., 56, 149
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Figure: Biding energy for self-gravitating bosons (coulomb
interaction) with d = 3 - Exact results in circles, ET results in
diamonds, ¢ =1 results in dashed line.

Results are from [4] Semay (2015) Few-Body Syst., 56, 149
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000000000e

The DOSM for systems of all identical particles

Tests

[ m+m | h+h]Exact [ET (¢=2) | ET (¢ =V?2) |

0 0 2.128 2.468 2.165
0 1 2.606 2.914 2.662
1 0 2.739 3.300 2.842
0 2 2.959 3.300 3.080
1 1 3.125 3.646 3.237
0 3 3.299 3.646 3.448
2 0 3.260 3.961 3.387
1 2 3.422 3.961 3.589
0 4 3.581 3.961 3.780
(A | 15% | 3.8% |

Table: Eigenmasses in GeV given by a model of light baryons
(D=3and N=3).

Results are from [4] Semay (2015) Few-Body Syst., 56, 149
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The DOSM for systems of all identical particles

Tests

[ m+m | h+h]Exact [ET (¢=2) | ET (¢ =V?2) |

0 0 2.128 2.468 2.165
0 1 2.606 2.914 2.662
1 0 2.739 3.300 2.842
0 2 2.959 3.300 3.080
1 1 3.125 3.646 3.237
0 3 3.299 3.646 3.448
2 0 3.260 3.961 3.387
1 2 3.422 3.961 3.589
0 4 3.581 3.961 3.780
(A | 15% | 3.8% |

Table: Eigenmasses in GeV given by a model of light baryons
(D=3and N=3).

Results are from [4] Semay (2015) Few-Body Syst., 56, 149
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The DOSM for systems of N, + 1 particles

Recap of the necessary informations about ET

Compact equations of ET (N, + 1 particles):
(E= NaT, (Pa) + Tp(Po) + C2 Vaa(raa) + Na Vab(ro)
N T/(pa)pd - CN? aa(raa)r38+ Mo 1\/;: ( )T

') 2 0
Th(Po)Po + 4 TH(pL) S = Nav;b(rs)’%g

P,
Paraay/ C/%/a = Q(Na)

| PoRo = Q(2)

o with p,? =p2 + 7% and =82 + R2

[5] Cimino, Semay (2022) Braz. J. Phys, 52, 45

[5]
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The ET and DOSM for systems of N, + 1 particles

To apply the DOSM to the compact equations

Strategy [3]:

(1) To start with a classical purely orbital solution
(2) To start a radial perturbation (still classically)
(3) To quantify the perturbation

[3] Chevalier, Willemyns, Cimino, Semay (2022) Few-Body Syst., 63, 40
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The ET and DOSM for systems of N, + 1 particles

To apply the DOSM to the compact equations

Strategy [3]:

(1) To start with a classical purely orbital solution
(2) To start a radial perturbation (still classically)
(3) To quantify the perturbation

... [Insert a lot of Taylor developements]...

[3] Chevalier, Willemyns, Cimino, Semay (2022) Few-Body Syst., 63, 40
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DOSM for N, + 1
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The ET and DOSM for systems of N, + 1 particles

To apply the DOSM to the compact equations

Strategy [3]:

(1) To start with a classical purely orbital solution
(2) To start a radial perturbation (still classically)
(3) To quantify the perturbation

After comparison of ET and DOSM we get:

1]\

wﬁ7n(r o) Po.

YRR | Ta) P
e s
I NRZ

)JQWU_
0

[3] Chevalier, Willemyns, Cimino, Semay (2022) Few-Body Syst., 63, 40

= i,
Va2 Taa R0
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The DOSM for systems of N, + 1 particles

Tests

Test: H = 2?21 pi| + (A — B)* + 52?21(3 —-r)? (D=3)

Result are from [3] Chevalier et al. (2022) Few-Body Syst., 63, 40
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The DOSM for systems of N, + 1 particles

Tests

Test: H = 2?21 pi| + (A — B)* + 52?21(3 —-r)? (D=3)

Ta(X) = Tb(X) = |X| Vaa(X) = x? Vab(X) = kx?

Result are from [3] Chevalier et al. (2022) Few-Body Syst., 63, 40
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The DOSM for systems of N, + 1 particles

Tests

Test: H =320 |pil + (7 — i)’ + k35,7 — 53)° (D =3)

Ta(x) = Tp(x) =Ix|  Vaa(x) =x*  Vap(x) = rx?

e r=20.1,10:
[ (na,np,la,ls) [k [ Exact[89] [ ET A(%) | DOSM  A(%) |
(0,0,0,0) 0.1 | 5.288 5597 55 5307 0.4
10 | 14.506 15.352 5.8 14699 1.3
(0,0,1,1) 0.1 | 7.515 7.868 4.7 7625 15
10 | 20.340 21580 6.1 21.032 3.4
(1,0,0,0) 0.1 | 8.067 8570 6.2 8010 0.7
10 | 19.134 20272 59 16.201 0.8
(0,1,0,0) 0.1 [ 6.750 6.970 3.2 6571 2.7
10 | 21.318 22598 6.0 21.397 0.4

Result are from [3] Chevalier et al. (2022) Few-Body Syst., 63, 40
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(0,0,0,0) 0.1 | 5.288 5597 55 5307 0.4
10 | 14.506 15.352 5.8 14699 1.3
(0,0,1,1) 0.1 | 7.515 7.868 4.7 7625 15
10 | 20.340 21580 6.1 21.032 3.4
(1,0,0,0) 0.1 | 8.067 8570 6.2 8010 0.7
10 | 19.134 20272 5.9 16.201 0.8
(0,1,0,0) 0.1 [ 6.750 6.970 3.2 6571 2.7
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@ Envelope theory is an approximation method ...

e easy to implement,

e sometimes endowed with a variational character,

o reliable even though not very accurate...

@ but this can be improved thanks to the DOSM.

@ The introduced method covers systems with ...

e N identical particles,

e N, identical particles and one different,

o (almost) arbitrary kinetics,

e two-body interactions,

@ ... but generalizations exist:
e K-body forces, [11]
e N, particles of type a and N, of type b, [10]

[11] Semay, Sicorello (2018) Few-Body Syst., 59, 119

[10] Semay, Cimino, Willemyns (2020) Few-Body Syst., 61, 19
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@ Envelope theory is an approximation method ...
e easy to implement,
e sometimes endowed with a variational character,
o reliable even though not very accurate...
@ but this can be improved thanks to the DOSM.
@ The introduced method covers systems with ...
o N identical particles,
N, identical particles and one different,
(almost) arbitrary kinetics,
two-body interactions,

@ ... but generalizations exist:
o K-body forces,
o N, particles of type a and N, of type b,

=- Many applications: hadronic, nuclear, atomic and

molecular, solid state physics...
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Conclusion

THE ENVELOPE THEORY, THE
METHOD THAT YOU NEED
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